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Abstract

In risk management, estimating Expected Shortfall (ES), though important and indispensable,
is difficult when the sample size is small. This paper makes efforts to create a recipe for such
a challenge. A tail-based normal approximation with explicit formulas is derived by matching
a specific quantile and the mean excess square of the sample observations. To enhance the
estimation accuracy, we propose an adjusted tail-based normal approximation based on the
sample’s tail weight. The adjusted ES estimator is robust and efficient in the sense that it
can be applied to various heavy-tailed distributions, such as student’s t, lognormal, Gamma,
Weibull, etc., and the errors are all small. Moreover, compared to two common ES estimators—
the arithmetic average of excessive losses and extreme value theory estimator, the proposed
estimator achieves smaller mean square errors for small samples, especially at high confidence
levels. The properties of linear transformations on the ES estimator are also investigated to
ensure its practicality.
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• Propose a tail-based normal approximation for ES estimation.

• Develop an adjusted tail-based normal ES estimation approach for heavy-tailed distribu-
tions.

• The approach is easy to implement and robust for various heavy-tailed distributions.

• The approach is substantially accurate and works well for small samples.
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1 Introduction

Expected Shortfall (ES), also known as Conditional Value-at-Risk (CVaR), is a coherent measure
of risk which considers losses exceeding the corresponding Value-at-Risk (VaR). As ES remedies
the tail risk and non-sub-additivity, problems VaR inherently suffers (?), it has been attracting
more and more attention in the field of risk management.

The ES of a sample can be estimated by definition with a parametric distribution or by extreme
value theory (EVT) approach (?). Besides the Generalized Pareto distribution (GPD) supported
by EVT, other asymmetric distributions such as skewed normal (?), asymmetric t and exponential
power distributions (?), and Laplace (?) have also been studied. In view of location-scale distribu-
tions, ? propose various large-sample parametric confidence intervals for ES estimates. Moreover,
? introduce a multiple-period ES estimation method within frameworks of random walks, autore-
gressive process or GARCH(1, 1) models with t distributed innovations. ? also evaluate the ES
forecasts using GARCH models with different estimation frequencies. For mixture distributions,
normal and t mixture distributions and their closed-form ES estimates are investigated by ?.

Compared to parametric methods, non-parametric ES estimators avoid distributional assump-
tions. A popular non-parametric estimator is defined by ? as the arithmetic average of losses that
are beyond a specific VaR estimator, which is similar to the natural estimator for expected losses
in the worst case proposed by ?. ? introduce an extrapolation method to estimate ES. Applying
empirical likelihood, an asymptotically valid confidence interval for ES is derived by ?. Besides,
? propose a kernel-smoothed ES estimate that worked well even in the dependent situations. The
kernel smoothing produces a VaR estimator with less mean square errors, especially for small sam-
ples (?), while ? shows that such smoothing cannot give a more accurate ES estimator. Taking
advantage of its simplicity, the arithmetic average of exceedances is still one of the most popular
non-parametric ES estimators.

Though many methods have been studied, selecting an accurate ES estimator is a challenge in
practice. In light of the arithmetic average of exceedances, the given sample of losses, however, is
not always large enough to give a robust estimator. Assuming the sample size is 250, the number
of one year’s observations, only the largest two losses are covered when estimating ES at the 99%
confidence level and only the maximal one is valuable for ES at the 99.5% level. ? indicate that
ES estimator is quite unstable especially for a heavy-tailed1 loss distribution where it is easily
affected by whether infrequent losses would occur in the realized sample. Moreover, given such
small samples, estimating GARCH models precisely is also difficult.

Normal distributions have many nice properties with the presence justified by Central Limit The-
orem but they cannot properly capture the heavy-tailed behaviors that are common in the financial
data. A model building approach with normal distributions usually suffers the ‘underestimation’
problem when estimating ES. Heavy-tailed distributions such as t and other stable distributions
have also been considered but some inherent drawbacks impede their applications. For example,
the sum of two t distributed r.v.’s generally no longer follows a t distribution. Moreover, even
though the sum of two stable r.v.’s follows a stable distribution, there is usually no general explicit
formula for its probability density function.

In this paper, we propose a new ES estimator based on the tail-based normal approximation.
This tail-based feature proves to be effective to alleviate the ‘underestimation’ problem. To further
improve the estimation accuracy, a regression-adjusted tail-based normal approximation is then

1In this paper, a heavy-tailed distribution refers to any distribution that has a heavier right tail than the normal
distribution.
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introduced where the sample tail weight is considered. The robust tests indicate the adjusted ES
estimator works well for various heavy-tailed loss distributions. It also outperforms the widely-
used arithmetic average and EVT ES estimators in terms of mean square error (MSE) for small
loss samples simulated from heavy-tailed distributions. Moreover, the properties of the proposed
ES estimator on linear transformation further facilitate its application to portfolio management.

The rest of paper is organized as follows. In Section 2, we propose a tail-based normal approxi-
mation and derive the explicit formula of its ES estimator. The accuracy analysis is also provided.
In Section 3, we adjust the tail-based normal approximation using the sample’s tail weight, and
explores whether such adjustment leads to a more accurate ES estimation. In Section 4, a self-
consistency test and some robust tests are carried out to validate the proposed ES estimator. We
compare the proposed ES estimator to the arithmetic average and EVT estimators for small loss
samples in Section 5. Moreover, the effects of linear transformation on the ES estimator are studied
in Section 6. In Section 7, we conclude the paper and suggest some topics of the future work. All
detailed derivations are included in the Appendix.

2 Tail-Based Normal Approximation for ES Estimation

For a loss (or negative return) random variable (r.v.) L, its ES at level β ∈ (0, 1) is defined as
follows (see ?):

ESβ(L) =
1

1− β

∫ 1

β
VaRφ(L)dφ, (2.1)

where VaRφ(L) is the value-at-risk at level φ ∈ (0, 1) which is defined by

VaRφ(L) = inf{z ∈ R|Pr(L ≤ z) ≥ φ}. (2.2)

It can be shown through a variable transformation that if the loss r.v. L is continuously distributed
with a PDF f(·), then Eq. (2.1) is equivalent to

ESβ(L) = E[L|L ≥ VaRβ(L)] =
1

1− β

∫ ∞
VaRβ(L)

xf(x)dx. (2.3)

In traditional model building approaches, all available sample points are utilized to estimate the
distribution parameters. For example, a normal approximation is usually obtained by matching its
mean and variance to the sample mean and sample variance. This type of approach is global-based
in the sense that all sample points are taken into consideration.

ES, however, is a statistic that mainly depends on tail behaviors. Therefore, global-based ap-
proaches may not give accurate ES estimations. This is one of the reasons why the global-based
normal approximation typically underestimates the ES for real market data, especially at high
confidence levels such as 99% and 99.5%.

In this section, we propose a tail-based approach that only considers the tail sample points. In
particular, focusing on the excessive observations, we build a tail-based normal approximation by
equating its specific quantile (e.g. 95%-quantile) and mean excess square to the counterparts of the
objective sample. This approximation will be further improved in the next section through some
adjustment factors related to the sample’s tail weight.

We want to point out the idea of the tail-based approximation can be applied to distributions
other than normal distributions, such as student’s t, Gamma, etc. In this paper, we only consider
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normal distributions for the following reasons. Firstly, normal distributions are simple and have
many nice properties. For example, the sum of two normal r.v.’s is still a normal r.v., which is
useful in risk management when calculating n-day ES (or VaR) based on daily estimates. Secondly,
the tail-based normal approximation gives sufficiently accurate results so it might not be necessary
to explore other distributions.

2.1 Explicit Formulas of Tail-Based Normal Approximation

Let Y = {yn}Nn=1 denote a sample of losses and our goal is to develop a model-based approach
to estimate β-level ES estimate ESβ. β is usually close to 1, and two popular choices are 99%
and 99.5%. Apparently, this approach should mainly depends on the right-tail behavior of the loss
sample. Firstly, for any α ∈ (0, 1), we define Aα, the α-quantile of the sample Y, as follows:

Aα ≡ (bNαc+ 1−Nα)y(bNαc) + (Nα− bNαc)y(bNαc+1), (2.4)

where bNαc represents the greatest integer that is less than or equal to Nα (i.e. b·c is the floor
function), and y(1), y(2), · · · , y(N) are the ascending order statistics of the sample Y. In case of pos-
sible misunderstandings, ‘α-quantile’ (0 < α < 1) in this paper is equivalent to (100α)th percentile.
For example, 0.75-quantile or 75%-quantile is equivalent to 75th percentile.

Next, we choose a threshold level α that is less than β (e.g. α = 0.95 when β = 0.99) and define
a normal r.v. X ∼ N(µ, σ2) to approximate the right tail of the sample Y beyond the α-quantile
Aα; that is, we are going to find a tail-based normal approximation for the given sample. In
particular, µ and σ2 are solved such that the two tail statistics, the α-quantile and the ‘conditional
tail variance’ (mean excess square), match the corresponding sample statistics:

Pr(X ≤ Aα) = α, E[(X −Aα)2|X > Aα] =

∑N
n=1(yn −Aα)2

1{yn>Aα}∑N
n=1 1{yn>Aα}

, (2.5)

where 1{·} is the indicator function.

We can derive the unique solution (µ, σ2) of the system of equations listed above. Define Z ≡
X−µ
σ , and then Z follows a standard normal distribution. Thus the first equation in Eq. (2.5) can

be transformed as follows:

Pr(X ≤ Aα) = Pr

(
X − µ
σ

≤ Aα − µ
σ

)
= Pr

(
Z ≤ Aα − µ

σ

)
= Φ

(
Aα − µ
σ

)
= α, (2.6)

Aα − µ
σ

= Φ−1(α) = zα. (2.7)

where Φ(·) and zα denote the cumulative distribution function (CDF) and z-score of a standard
normal distribution, respectively; that is, zα = Φ−1(α). The conditional first and second moments
of X (See Appendix A for details) are calculated as

E[X|X > Aα] = E
[
σZ + µ

∣∣∣∣Z >
Aα − µ
σ

]
= µ+

σ

(1− α)
√

2π
e−

(Aα−µ)2
2σ2 , (2.8)

E[X2|X > Aα] = E
[
µ2 + σ2Z2 + 2µσZ

∣∣∣∣Z >
Aα − µ
σ

]
= µ2 + σ2 +

σ(Aα + µ)

(1− α)
√

2π
e−

(Aα−µ)2
2σ2 . (2.9)
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By Eq. (2.7), Eq. (2.8) and Eq. (2.9):

E[(X −Aα)2|X > Aα] = E[X2|X > Aα]− 2AαE[X|X > Aα] +A2
α

= (µ−Aα)2 + σ2 +
σ(µ−Aα)

(1− α)
√

2π
exp

(
− (Aα − µ)2

2σ2

)
= σ2

[
z2
α + 1− zα

(1− α)
√

2π
e−

1
2
z2α

]
.

(2.10)

By Eq. (2.5), Eq. (2.7) and Eq. (2.10), we can get the explicit formulas for the parameters µ, σ of
the tail-based normal approximation using the sample data set {yn}Nn=1 as follows:

σ̂2 =
1[

z2
α + 1− zα

(1−α)
√

2π
e−

1
2
z2α
] [∑N

n=1(yn −Aα)2
1{yn>Aα}∑N

n=1 1{yn>Aα}

]
, (2.11)

µ̂ = Aα − σ̂zα. (2.12)

In practice, when calculating the β-level (e.g. β = 99% or 99.5%) ES estimate of the loss sample Y =
{yn}Nn=1 , we first derive the tail-based normal approximation given by Eq. (2.11) and Eq. (2.12)
with a threshold level α that is less than β (e.g. α = 95%). Once the normal distribution is
obtained, it can be used to calculate the ESβ as:

VaRβ = µ̂+ σ̂zβ, (2.13)

ESβ = E[X|X > VaRβ] = µ̂+
σ̂

(1− β)
√

2π
e−

1
2
z2β , (2.14)

where zβ = Φ−1(β) is the z-score of the standard normal distribution at confidence level β.

To test the accuracy, the tail-based normal approximation is also implemented for a loss r.v. with
an explicit distribution function. As for a loss r.v. W with CDF FW (·) and probability density
function (PDF) fW (·), its α-quantile Aα and mean excess square can be calculated by:

Aα = F−1
W (α), E[(W −Aα)2|W > Aα] =

1

1− α

∫ ∞
Aα

(x−Aα)2fW (x)dx. (2.15)

By Eq. (2.12), Eq. (2.11) and Eq. (2.15), the parameters, (µ̂w, σ̂w), of the tail-based normal
approximation for the loss r.v. W can be obtained similarly as

σ̂2
w =

1[
z2
α + 1− zα

(1−α)
√

2π
e−

1
2
z2α
]E[(W −Aα)2|W > Aα], (2.16)

µ̂w = Aα − σ̂zα. (2.17)

2.2 Accuracy Analysis for Tail and Global Based Normal Approximations

In what follows, the accuracy of the tail-based normal approximation will be tested. Firstly, we
compare the global-based and tail-based normal approximations using three samples of daily S&P
500 Index losses. The daily loss of Day m is calculated by − ln(Pm/Pm−1), where Pm is the index
value at Day m. As previously mentioned, the global-based normal approximation is obtained by
matching its mean and variance to the sample mean and sample variance of the losses. The tail-
based normal approximation is obtained by Eq. (2.11) and Eq. (2.12). The results are displayed

5



in the form of Q-Q probability plots in Figure 1 where the tail-based and global-based normal
approximations are marked by asterisks and triangles, respectively.

Concerning the right tail, Figure 1 shows the tail-based normal approximation is much closer
to the given daily loss data than the global-based one. Since only the right tail is used for ES
estimation, the tail-based normal approximation is expected to give a better ES estimate.

−12 −9 −6 −3 0 3 6 9

×10−2−20

−15

−10

−5

0

5

10
×10−2

tail-based

global-based

45◦ line

market daily losses

n
o
rm

a
l
d
is
tr
ib
u
ti
o
n
s

(a) Jul 2, 2007 - Jun 30, 2009

−6 −4 −2 0 2 4 6

×10−2

−10

−8

−6

−4

−2

0

2

4

6
×10−2

45◦ line

global-based

tail-based

market daily losses

n
o
rm

a
l
d
is
tr
ib
u
ti
o
n
s

(b) Jan 4, 2010 - Jun 30, 2017

−10 −5 0 5 10 15

×10−2

−25

−20

−15

−10

−5

0

5

10
×10−2

tail-based

global-based

45◦ line

market daily losses

n
o
rm

a
l
d
is
tr
ib
u
ti
o
n
s

(c) Mar 21, 2019 - Mar 21, 2020

Figure 1: Q-Q Plot: global & tail-based normal approximations (y-axis) vs market daily losses (x-axis), α = 95%

To further test the accuracy of the tail-based normal approximation, we examine its performances
for some common heavy-tailed loss distributions. The idea is that, for a r.v. W with a known
distribution (such as t, Lognormal, etc.), we use formulas Eq. (2.16) and Eq. (2.17) to obtain its
tail-based normal approximation. The formulas Eq. (2.13), Eq. (2.14) are then used to derive its
VaR estimator, denoted by VaRt

β, and ES estimator, denoted by EStβ, where the superscript t
stands for tail-based. The theoretical values of VaR and ES estimates can be calculated by the
PDF of the actual distribution and they are denoted by VaRβ and ESβ, respectively.

To quantitatively describe the estimation errors, the relative errors of the tail-based normal
approximation are defined as follows:

etβ(ES) ≡
ESβ − EStβ

ESβ
, etβ(VaR) ≡

VaRβ −VaRt
β

VaRβ
. (2.18)

From the above definitions, we can see that if the relative error is positive, there is an underesti-
mation while if it is negative, there is an overestimation.

Additionally, for comparison reasons, we obtain the traditional global-based normal approxima-
tion by matching its mean and variance to the counterparts of W . Its VaR and ES estimators are
denoted by VaRg

β and ESgβ respectively, where the superscript g stands for global-based. Similarly,
the relative errors of the global-based normal approximation are defined by:

egβ(ES) ≡
ESβ − ESgβ

ESβ
, egβ(VaR) ≡

VaRβ −VaRg
β

VaRβ
. (2.19)

To investigate the performance of the tail-based normal approximation, we test it with heavy-tailed
distributions including t, Gamma, Lognormal, GPD, and Weibull with different parameters. The
location parameter is set to zero and the scale parameter is set to one if they exist. The distribution
functions of each distribuiton are listed in Table 11 in Appendix B.

The relative errors for ES and VaR at β = 99% or 99.5% for tail-based and global-based normal
distributions are given in Table 1, which shows that the tail-based normal approximation has much
smaller ES estimation errors than the global-based one for all examined loss distributions.
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W β (%) ESβ egβ(ES) (%) etβ(ES) (%) VaRβ egβ(VaR) (%) etβ(VaR) (%)

t, df=3.5
99 5.895 30.940 -4.848 4.061 12.489 -19.838
99.5 7.290 39.405 3.152 5.086 22.633 -14.716

t, df=5
99 4.452 22.721 -0.919 3.065 10.747 -9.075
99.5 5.250 28.886 3.924 4.032 17.528 -6.054

t, df=8
99 3.591 14.296 0.121 2.897 7.258 -4.023
99.5 4.083 18.222 2.770 3.355 11.357 -2.380

Gamma(5, 1)
99 13.001 15.699 0.225 11.605 12.088 -0.851
99.5 13.956 17.837 0.977 12.594 14.565 -0.339

Gamma(3, 1)
99 9.639 20.981 0.303 8.406 16.376 -1.225
99.5 10.485 23.618 1.332 9.274 19.542 -0.489

Gamma(0.3, 1)
99 3.494 49.627 0.819 2.639 40.358 -4.947
99.5 4.092 53.956 3.954 3.221 46.878 -1.895

LogN(0, 1)
99 15.228 51.348 -2.409 10.241 34.803 -18.511
99.5 18.971 58.364 5.598 13.142 45.096 -11.720

LogN(0, 0.92)
99 11.527 48.269 -1.316 8.115 33.510 -14.107
99.5 14.059 54.884 5.417 10.158 42.769 -8.693

LogN(0, 0.32)
99 2.235 14.911 0.225 2.010 10.786 -1.179
99.5 2.391 17.420 1.237 2.166 13.521 -0.564

GPD(0.3,1)
99 15.624 52.326 -7.747 9.937 32.743 -29.377
99.5 20.006 60.208 2.547 13.004 44.274 -21.385

GPD(0.2,1)
99 10.699 48.118 -1.726 7.559 33.803 -14.187
99.5 13.034 54.604 4.933 9.427 42.646 -9.154

GPD(0.1,1)
99 7.610 41.892 0.179 5.849 31.594 -6.576
99.5 8.874 46.994 4.121 6.987 38.296 -3.584

Weibull(0.6,1)
99 17.990 52.448 0.339 12.747 39.923 -10.158
99.5 21.773 57.955 5.711 16.103 48.344 -4.972

Weibull(0.9,1)
99 6.801 38.632 0.584 5.457 30.791 -3.347
99.5 7.739 42.637 2.936 6.377 36.193 -1.386

Weibull(1.4,1)
99 3.415 21.839 0.262 2.977 17.831 -0.859
99.5 3.714 24.100 1.005 3.290 20.660 -0.290

Table 1: Estimation errors of tail-based and global-based normal approximations, α = 95%

The improvements in ES estimation using the tail-based normal approximation are associated
with overestimated VaR values (see the last column in Table 1). The overestimates of the VaR are
needed to compensate for the originally underestimated ES estimates since the normal distribution
has a lighter right tail than all the examined distributions.

Though the tail-based normal approximation gives more accurate ES estimates than the global-
based one, its errors are not small enough and further improvements are needed. Moreover, it
seems the errors have some dependence on the tail weight (shape) parameters of those distributions.
Therefore, we consider an adjustment factor related to some tail weight statistics in the next section.
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3 Adjusted Tail-Based Normal Approximation

The distributions of financial data are usually heavy-tailed so extreme losses are more frequent than
the normal distributed samples. Table 1 indicates the estimation errors of the tail-based normal
approximation depend on the tail weight of its actual distribution. Therefore, to further decrease
the estimation errors, let us propose an adjusted tail-based normal approximation.

Suppose the theoretical β-level ES estimate of a loss r.v. W with a given distribution is denoted
by ESβ(W ). We pick a value of α such that α < β and the α-quantile of W is denoted by
Aα. Assuming X, obtained by Eq. (2.16) and Eq. (2.17), is the r.v. of the tail-based normal
approximation for W , a ratio Rα,β that measures estimation errors is defined by

Rα,β ≡
ESβ(W )−Aα
ESβ(X)−Aα

, (3.1)

where ESβ(X) is obtained by Eq. (2.14) and Aα is the α-quantile for both X and W . W and X
always have the same α-quantile, which is ensured by the derivation of the tail-based normal ap-
proximation: X is obtained by matching its α-quantile and mean excess square to the counterparts
of W .

The reason why we subtract Aα from both the numerator and denominator in Eq. (3.1) is it
ensures Rα,β stays unchanged when the loss r.v. is subject to a linear transformation (see Section
6 for details). Since the relative distribution shapes of X and W are not changed by a linear
transformation, neither is Rα,β. If the estimation error is close to 0, Rα,β is close to 1 and vice
versa. Therefore, Rα,β can be used as a measure of the estimation error. Moreover, the results
in Table 1 imply this ratio depends on the tail weight of W . To further navigate the relationship
between the ratio Rα,β and the tail weight, we need a variable to quantitatively measure the tail
weight generally. For a loss r.v. W whose α-quantile equals Aα, its conditional skewness is defined
by

γα ≡
E[(W −Aα)3|W > Aα]

(E[(W −Aα)2|W > Aα])
3
2

. (3.2)

A similarly defined conditional kurtosis can be considered, too. Since results with the conditional
skewness are already outstanding, we stay with it in this paper. Our idea is to develop a regression
model between Rα,β and γα such that

R̂α,β = fα,β(γα). (3.3)

We can subsequently have a more accurate ES estimator by adjusting the tail-based normal ap-
proximation based on Eq. (3.1).

Remark 1 From the formula of γα, it seems the regression-adjusted tail-based normal approxima-
tion only works for distributions with a finite third moment. This drawback may limit the application
of the proposed method. However, the third moment of any given sample always exists (it might be
very large), and the method is still feasible. We give the numerical results for samples generated
from some distributions without finite third moments, such as student’s t with the degree of freedom
equals to 2.5 or 3, and GPD with ξ = 0.35 or 0.5. Please refer to the results in Table 10 and the
discussion after that.

Now we take the student’s t distribution for the r.v. W as the training distribution. Choosing
different degrees of freedom (df), we can obtain different W with the corresponding tail weights
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α = 95%, β = 99% α = 95%, β = 99.5%

Coefficient Value SE p-value Value SE p-value

b0 0.8611 1.7× 10−4 0.00 0.9919 2.2× 10−4 0.00
b1 0.5191 7.0× 10−3 0.00 0.6681 8.5× 10−3 0.00
b2 0.9747 3.8× 10−3 0.00 0.9607 3.7× 10−3 0.00
b3 0.6099 2.0× 10−3 0.00 0.6022 2.5× 10−3 0.00
b4 -0.9413 6.9× 10−5 0.00 -1.4623 6.2× 10−3 0.00

Adjusted R2 = 0.9999 Adjusted R2 = 0.9998

Table 2: Summary for regression models with α = 95%, β = 99% and α = 95%, β = 99.5%

γα. Then a regression model between Rα,β and γα is built. One thing we want to point out is that,
although the regression model is developed based on student’s t distribution, it can be applied to
other heavy-tailed distributions (see Remark 2 and the robust test results in Subsection 4.2).
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Figure 2: Scatter plot of Rα,β on γα with regression line; α = 95%, β = 99% (left), β = 99.5% (right)

To illustrate the relation between Rα,β and γα, we plot some values in Figure 2 (the small
circles) for β = 99% (left) and β = 99.5% (right). A regression analysis is subsequently conducted
to develop an equation that predicts Rα,β from the conditional skewness of the t distributed r.v. W .
According to Figure 2, the scatter plots2 of Rα,β on γα, the following regression lines are devised
(see the solid lines in Figure 2) :

R̂α,β = fα,β(γα) = b0 + b1e
−b2γα + b3γ

−1
α + b4γ

−2
α , α = 95%, β = 99% or 99.5%. (3.4)

The coefficient estimates in Eq. (3.4) with p-values and the adjusted R2 are reported in Table
2 which shows all variables are useful to predict Rα,β. We want to mention that, in (3.4), the
coefficient values depend on the values of α and β. The other thing we want to mention is that,
the regression model is not unique. Any prediction formula works as long as it precisely describes
relations between Rα,β and γα.

The adjustment factor fγ,β(γα) depends on the level of α and β, but it is usually robust on the
distribution of W . By Eq. (3.1) and Eq. (3.3), we can get a more accurate ES estimator based on
the regression-adjusted tail-based normal approximation as

ÊSβ(X) ≡ [ESβ(X)−Aα]fα,β(γα) +Aα. (3.5)

2To ensure the regression line is shown clearly, only a few points are displayed in Figure 2 while regression analysis
covers a sufficiently large number of points to guarantee the effectiveness.
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Remark 2 Though the two regression models (β = 99% or 99.5%) in Eq. (3.4) are built based
on the student’s t distributions, we can adopt them to adjust the tail-based normal approximation
obtained from loss samples or loss r.v.’s given by other distributions. This adjustment is feasible
because the corresponding γα defined by Eq. (3.6) or Eq. (3.2) is a general statistic. The accuracy
of the ES estimator after the adjustment will be discussed in the next two sections.

For a sample of losses Y = {yn}Nn=1, its conditional skewness γα is calculated by

γα ≡

∑N
n=1(yn−Aα)31{yn>Aα}∑N

n=1 1{yn>Aα}[∑N
n=1(yn−Aα)21{yn>Aα})∑N

n=1 1{yn>Aα}

] 3
2

, (3.6)

where Aα is the sample’s α-quantile given by Eq. (2.4).

The γα of a loss r.v. W has been defined by Eq. (3.2) which will be used later for error estimation
and robust tests. The calculation in Eq. (3.2) depends on the third moment of W . If W follows
a distribution without a finite third moment such as GPD(0.35,1), then the adjust tail-based ES
estimator of W is not available. This limitation is negligible in most cases since our estimator is
designed for small samples whose γα can always be obtained by Eq. (3.6).

For a given loss sample Y, the algorithm for obtaining our regression-adjusted ES estimator from
the tail-based normal approximation can be summarized as follows:

Algorithm for the adjusted tail-based normal ESβ estimation

Step 1. Choose a value for α (e.g. α = 95%), and calculate Aα using Eq. (2.4);

Step 2. Obtain the tail-based normal r.v. X by Eq. (2.11) and Eq. (2.12);

Step 3. Compute the sample’s conditional skewness γα by Eq. (3.6);

Step 4. Compute the adjustment factor fα,β(γα) by Eq. (3.4);

Step 5. Obtain the adjusted tail-based normal ES estimator at β level by Eq. (3.5).

4 Consistency and Robust Tests

Although the adjustment factor Rα,β is developed based on the student’s t distributions, it works
well for many other heavy-tailed distributions, such as Gamma, Lognormal, GPD, Weibull, etc.
Therefore, the adjusted tail-based normal approximation is a simple and robust approach for ES
estimations. In this section, we present some results on the consistency test and robust test.

4.1 Consistency Test

Before examining the accuracy of the adjusted tail-based normal approximation, a self-consistency
test is conducted. Suppose the loss r.v. W itself follows a normal distribution; that is, W ∼
N(µ, σ2). Under this circumstance, the corresponding tail-based normal r.v. X obviously also
follows N(µ, σ2). Therefore, the adjustment based on the tail weight is not necessary; that is,
the adjustment factor Rα,β should be close to 1. Next, let us verify the result by considering an
arbitrary normal distribution.
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Define zα ≡ Φ−1(α), and qα ≡ 1
(1−α)

√
2π
e−

z2α
2 . Let Aα denote the α-quantile of W . We have

Aα = µ+ σzα. (4.1)

Moreover, we have (see Appendix A for details)

E[W |W > Aα] = µ+ σqα, (4.2)

E[W 2|W > Aα] = µ2 + σ2 + σ(Aα + µ)qα, (4.3)

E[W 3|W > Aα] = µ3 + 3µσ2 + [σ(A2
α + µ2 +Aαµ) + 2σ3]qα. (4.4)

Define s2 ≡ E[(W − Aα)2|W > Aα], and r3 ≡ E[(W − Aα)3|W > Aα]. By Eq. (4.1)-Eq. (4.4), s2

and r3 can be expanded as

s2 = (µ−Aα)[σqα + (µ−Aα)] + σ2,
s2

σ2
= − zα(qα − zα) + 1,

r3 = (µ−Aα)3 + 3(µ−Aα)σ2 + [2σ2 + (Aα − µ)2]σqα,
r3

σ3
= − z3

α − 3zα + (2 + z2
α)qα.

It is proved that r3/σ
3 and s2/σ

2 only depend on α. Therefore, the square of the conditional
skewness of W is derived by

γ2
α =

r2
3

s3
2

=
(r3/σ

3)2

(s2/σ2)3
=

[−z3
α − 3zα + (2 + z2

α)qα]2

[−zα(qα − zα) + 1]3
. (4.5)

Based on Eq. (4.5), γα, a constant that only depends on α, is independent of µ and σ2.

Obviously, the original estimation error of the tail-based normal approximation is zero since X
is a replication of W . For α = 95%, we have γα = 1.838 by Eq. (4.5), fα,β1(γα) = 1.0008 and
fα,β2(γα) = 1.0009 by Eq. (3.4) at β1 = 99% and β2 = 99.5% levels. Since fα,β(γα) is close to 1, the
estimation error of the adjusted tail-based normal approximation is still close to zero. Therefore
the adjusted tail-based normal ES estimation method is self-consistent.

4.2 Robust Test and Estimation Errors for Heavy-Tailed Loss Distributions

To test the accuracy of the proposed adjusted tail-based approximation, we calculate the ES esti-
mates of some heavy-tailed distributions. The results will be compared with the accurate values
derived from the distribution functions.

In particular, for a loss r.v. W with a known distribution, its corresponding tail-based normal
r.v. X and conditional skewness, γα, can be determined respectively by Eq. (2.16)-Eq. (2.17) and
Eq. (3.2). Apart from the original ES estimation error defined in Eq. (2.18), a measure of the
regression-adjusted estimation error for our ES estimator at β level is now defined by

êtβ(ES) ≡
ESβ(W )− ÊSβ(X)

ESβ(W )
, (4.6)

where ÊSβ(X), the β-level adjusted tail-based normal approximation, is given in Eq. (3.5).

The results are summarized in Table 3, in which the original and adjusted errors are both reported
for various heavy-tailed loss distributions. For each kind of distributions, three different parameter
sets are chosen and the most heavy-tailed one is listed first.
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W γα ESβ1(W ) etβ1(ES) (%) êtβ1(ES) (%) ESβ2(W ) etβ2(ES) (%) êtβ2(ES) (%)

t, df=3.5 7.181 5.895 -4.848 -0.028 7.290 3.152 -0.036
t, df=5 3.165 4.452 -0.919 -0.003 5.250 3.924 -0.004
t, df=8 2.359 3.591 0.121 -0.001 4.083 2.770 -0.001

Gamma(5,1) 1.998 13.001 0.225 0.091 13.956 0.977 0.142
Gamma(3,1) 2.033 9.639 0.303 0.135 10.485 1.332 0.214
Gamma(0.3,1) 2.249 3.494 0.819 0.572 4.092 3.954 0.985

LogN(0,1) 3.902 15.228 -2.409 -0.161 18.971 5.598 1.178
LogN(0,0.92) 3.416 11.527 -1.316 0.104 14.059 5.417 1.116
LogN(0,0.32) 2.098 2.235 0.225 0.091 2.391 1.237 0.158

GPD(0.3, 1) 11.225 15.624 -7.747 -0.689 20.006 2.547 0.065
GPD(0.2, 1) 3.674 10.699 -1.726 0.062 13.034 4.933 0.672
GPD(0.1, 1) 2.571 7.610 0.179 0.274 8.874 4.121 0.652

Weibull(0.6, 1) 2.673 17.990 0.339 0.610 21.773 5.711 1.526
Weibull(0.9, 1) 2.192 6.801 0.584 0.352 7.739 2.936 0.612
Weibull(1.4, 1) 1.967 3.415 0.262 0.114 3.714 1.005 0.166

β1 = 99%, β2 = 99.5%

Table 3: Regression-adjusted errors for various heavy-tailed loss distributions, α = 95%

Table 3 shows the adjusted tail-based normal approximation is much more accurate than the
original one. The relative errors of the t distributions after adjustment are very small as expected
since the adjustment factors are obtained from the t distribution.

Moreover, the adjusted tail-based normal approximations of other heavy-tailed distributions also
have small relative errors (−0.7% ∼ 1.6%), though the adjustment factors are initially developed
from the t distribution. Therefore, the regression models work effectively for distributions other
than the t distribution and the adjusted tail-based normal approximation is a robust ES estimation
method for loss r.v.’s with various heavy-tailed distributions.

5 Expected Shortfall Estimators for Small Samples

To further test the accuracy of our method, the adjusted tail-based normal ES estimator is compared
to the arithmetic average (AA) of excessive losses and the extreme value theory (EVT) ES estimator
for small loss samples simulated from various heavy-tailed distributions.

5.1 Arithmetic Average of Excessive Losses

We adopt the AA estimator proposed by ?: assuming Ỹ(1), . . . , Ỹ(N−1), Ỹ(N) is a sample of N
losses sorted in the ascending order, its ES estimator at level β is defined as

ẼSβ =

∑N
n=dNβe Ỹ(n)

N + 1− dNβe
, (5.1)

where dNβe denotes the smallest integer greater than or equal to Nβ.
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5.2 Extreme Value Theory Expected Shortfall Estimator

The EVT estimator of ES is also considered. Assuming F (w) is the CDF for a loss r.v. W , the
distribution function of excesses beyond a threshold v is defined by ? as follows:

Fv(y) = Pr(W − v ≤ y|W > v) =
F (v + y)− F (v)

1− F (v)
. (5.2)

According to ?, as the threshold v increases, Fv(y) converges to a GPD whose CDF and PDF are
listed as below:

Gξ,σ(y) = 1−
(

1 + ξ
y

σ

)−1/ξ
, gξ,σ(y) =

1

σ

(
1 + ξ

y

σ

)−1/ξ−1
, ξ 6= 0, σ > 0, (5.3)

where ξ is a shape parameter and σ is a scale parameter. Assuming there are nv losses, {wk}nvk=1,
greater than the threshold v, then the sequence {wk−v}nvk=1 will show Generalized Pareto behavior

(?). If ξ < 0, an extra condition is 1 + ξ (wi−v)
σ > 0 for i = 1, . . . , nv. When ξ = 0, the GPD

becomes the exponential distribution so Gξ,σ(y) = 1− exp
(
− y
σ

)
and gξ,σ(y) = 1

σ exp
(
− y
σ

)
, σ > 0.

Accordingly, ξ and σ estimates in GPD are solutions that maximize its log-likelihood function:

(ξ∗, σ∗) = arg max
ξ,σ

nv∑
k=1

ln
(
gξ,σ(wk − v)

)
. (5.4)

The estimation of GPD by MLE can be limited since for some samples the likelihood function
appears to have no local maximum. ? show that for ξ < −1, there never exists a local maximum
and then the BIC or AIC criteria cannot be used to model selection.

In this paper, given a loss sample and the 95th percentile threshold, we calculate the maximum
likelihood estimates of the GPD for all the three situations: ξ < 0, ξ = 0, and ξ > 0. Numerical
algorithms3 are used to obtain the optimal estimators in each situation. For ξ > 0, it is a uncon-
strained optimization problem and the Nelder-Mead simplex algorithm is applied. For ξ = 0, the
GPD becomes the exponential distribution and the MLE has a analytical solution. For ξ < 0, the
interior point algorithm is used with the strict constraint ξ > − σ

max(w)−v where v is the threshold

and max(w) is the maximum value of the loss sample. Then the estimate that has the maximum
likelihood in the three situations will be selected to fit the simulated loss sample.

Remark 3 In practice, the threshold v is usually set to equal to the 95th percentile of the loss
sample. We keep this selection so that the threshold v of the EVT estimator is same as Aα (α =
0.95) in our adjusted tail-based ES estimator.

Fv(y) in Eq. (5.2) is a conditional probability if W ≤ v + y given W > v. The unconditional
distribution of excesses beyond the threshold v is thus derived by

Pr(W ≤ w) = (1− F (v))Gξ,σ(w − v) + F (v), w > v. (5.5)

When the parameters of the GPD are determined, the β-level (β > F (v)) EVT VaR and ES
estimators of W can be derived based on Eq. (5.5). The EVT estimator for VaR at β level is

3The algorithms are implemented in MATLAB with ‘fminsearch’ and ‘fmincon’ functions. MATLAB also offers a
function ‘gpfit’ to calculate the maximum likelihood estimates of the GPD with all situations considered. In practice,
for all simulated samples, the estimates required by numerical algorithms are identical to the ones got by ‘gpfit’.
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calculated by solving Pr(W ≤ VaRβ(W )) = β where the unconditional probability Pr(W ≤
VaRβ(W )) is given in Eq. (5.5). When ξ 6= 0, we have

(1− F (v))

(
1−

[
1 +

ξ(VaRβ(W )− v)

σ

]−1/ξ
)

+ F (v) = β. (5.6)

Thus VaRβ(W ) = v + σ
ξ [( 1−β

1−F (v))−ξ − 1]. Since W − v ∼ GPD(ξ, σ), its ES estimate is given by

ESβ(W ) = E[W |W ≥ VaRβ(W )] = v + E[W − v|W − v ≥ VaRβ(W )− v]

= v + VaRβ(W )− v +
σ + ξVaRβ(W )− ξv

1− ξ
=

VaRβ(W ) + σ − ξv
1− ξ

, (5.7)

where Eq. (5.7) is obtained by GPD’s ES closed-form formula which can be found in Table 11 (see
Appendix B). When ξ = 0, we have

(1− F (v))
(

1− e−
1
σ

(VaRβ(W )−v)
)

+ F (v) = β. (5.8)

Thus VaRβ(W ) = v − σ ln( 1−β
1−F (v)). Now W −v follows an exponential distribution with parameter

σ and we have the following derivation based on PDF of the exponential distribution:

E[W − v|W − v ≥ b] =
1

1−Gσ(b)

∫ ∞
b

y

σ
e−

y
σ dy = VaRβ(W )− v + σ,

ESβ(W ) = v + E[W − v|W − v ≥ b] = VaRβ(W ) + σ. (5.9)

where b = VaRβ(W )−v and Gσ(b) = Pr(W −v ≤ b) = 1−e−b/σ. In summary, given a loss sample,
the EVT ES estimate is calculated as follows:

• Calculate the threshold v using the 95th percentile of the loss sample.

• Determine the parameters of the GPD by maximizing the likelihood function for all the three
situations: ξ < 0, ξ = 0 and ξ > 0.

• Calculate the β-level ES estimate ESβ(EVT) based on Table 4. If the loss sample size is N ,
1− F (v) can be approximated by nv/N (?).

VaRβ(EVT) ESβ(EVT)

ξ 6= 0 v + σ
ξ

[(
1−β

1−F (v)

)−ξ
− 1

]
VaRβ(EVT)+σ−ξv

1−ξ

ξ = 0 v − σ ln
(

1−β
1−F (v)

)
VaRβ(EVT) + σ

Table 4: EVT estimators for VaR and ES at β-level

5.3 Comparison between the Three Expected Shortfall Estimators

To further validate the adjusted tail-based normal approximation, we implement the Monte Carlo
simulation and compare our ES estimates to the ones of AA and EVT methods. 2500 random loss
samples with equal sample size (250 or 500) are generated from each examined distribution. For
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each simulated sample, the three ES estimates at 99% and 99.5% levels are computed, respectively.
The evaluation of the estimates are based on the following three metrics:

MSE of ESβ,j =
1

M

M∑
i=1

(ESβ,j(i)− true ESβ)2 , j = 1, 2, 3, (5.10)

Variance of ESβ,j =
1

M

M∑
i=1

[
ESβ,j(i)−

1

M

M∑
i=1

ESβ,j(i)

]2

, j = 1, 2, 3, (5.11)

Bias of ESβ,j =
1

M

M∑
i=1

ESβ,j(i)− true ESβ, j = 1, 2, 3, (5.12)

where ‘true ESβ’ is the theoretical β-level ES value of the underlying distribution, j = 1 stands for
our adjusted tail-based normal approximation, j = 2 stands for the AA method, j = 3 stands for
the EVT method and i is the sample index of all M samples. In practice, the extremely skewed
sample that leads to a MLE EVT paramters with ξ > 0.65 is discarded so M is slightly less than
2500. The MSE of any estimator is equal to the sum of its variance and square of bias.

The results are summarized in Table 5 - Table 9, in which our adjusted tail-based normal approx-
imation ES estimator is denoted by ÊSβ, and the best metric of each column for a given underlying
distribution is highlighted with an underscore. The true ES values of the underlying distributions
in Table 5 - Table 9 can be found in Table 3.

From those tables, we can see that ÊSβ outperforms the other two in terms of MSE for β = 99%
or 99.5% for almost all the underlying distributions. In particular, it performs the best for all
scenarios with a smaller sample size (n = 250) or a higher confidence level (99.5%). For scenarios

with sample size n = 500 and confidence level 99%, the proposed ES estimator ÊSβ outperforms

MSE Var Bias

size=250 β1 β2 β1 β2 β1 β2

t, df=3.5
ÊS 2.514 5.243 2.280 3.897 -0.484 -1.160
AA 3.080 7.426 3.053 6.968 -0.162 -0.676

EVT 2.908 7.358 2.809 6.879 -0.315 -0.692

t, df=5
ÊS 0.949 1.821 0.901 1.521 -0.219 -0.548
AA 1.214 2.687 1.213 2.616 -0.028 -0.266

EVT 1.071 2.562 1.060 2.492 -0.106 -0.265

t, df=8
ÊS 0.356 0.645 0.340 0.552 -0.126 -0.305
AA 0.445 0.910 0.445 0.888 -0.010 -0.147

EVT 0.367 0.791 0.366 0.779 -0.032 -0.107

size=500 β1 β2 β1 β2 β1 β2

t, df=3.5
ÊS 1.683 3.561 1.605 2.970 -0.279 -0.769
AA 1.511 4.904 1.449 4.878 -0.248 -0.161

EVT 1.795 4.758 1.770 4.674 -0.157 -0.289

t, df=5
ÊS 0.533 1.068 0.517 0.946 -0.129 -0.348
AA 0.530 1.583 0.518 1.583 -0.108 -0.002

EVT 0.589 1.485 0.585 1.473 -0.063 -0.109

t, df=8
ÊS 0.193 0.366 0.187 0.331 -0.077 -0.187
AA 0.201 0.521 0.197 0.521 -0.060 -0.001

EVT 0.194 0.434 0.194 0.434 -0.008 -0.006

loss samples from t distribution, β1 = 99%, β2 = 99.5%

Table 5: Comparisons of three ES estimators, t distributed samples
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MSE Var Bias

size=250 β1 β2 β1 β2 β1 β2

Gamma(5, 1)
ÊS 1.247 2.164 1.155 1.785 -0.303 -0.616
AA 1.507 2.722 1.500 2.587 -0.080 -0.367

EVT 1.363 2.885 1.296 2.574 -0.260 -0.558

Gamma(3, 1)
ÊS 1.018 1.788 0.946 1.483 -0.268 -0.552
AA 1.243 2.311 1.237 2.200 -0.076 -0.334

EVT 1.157 2.567 1.110 2.342 -0.217 -0.475

Gamma(0.3, 1)
ÊS 0.510 0.912 0.485 0.780 -0.155 -0.364
AA 0.641 1.256 0.641 1.223 -0.002 -0.179

EVT 0.568 1.330 0.560 1.266 -0.089 -0.253

size=500 β1 β2 β1 β2 β1 β2

Gamma(5, 1)
ÊS 0.649 1.145 0.610 1.001 -0.197 -0.379
AA 0.700 1.488 0.672 1.484 -0.166 -0.059

EVT 0.733 1.568 0.699 1.479 -0.185 -0.299

Gamma(3, 1)
ÊS 0.525 0.939 0.491 0.812 -0.185 -0.356
AA 0.568 1.207 0.543 1.201 -0.156 -0.076

EVT 0.586 1.271 0.558 1.199 -0.168 -0.269

Gamma(0.3, 1)
ÊS 0.265 0.488 0.255 0.435 -0.101 -0.229
AA 0.281 0.673 0.276 0.673 -0.069 0.010

EVT 0.320 0.749 0.316 0.741 -0.061 -0.089

loss samples from Gamma distribution, β1 = 99%, β2 = 99.5%

Table 6: Comparisons of three ES estimators, Gamma distributed samples

MSE Var Bias

size=250 β1 β2 β1 β2 β1 β2

LogN(0, 1)
ÊS 18.295 37.418 16.619 28.010 -1.294 -3.067
AA 22.731 51.119 22.570 48.008 -0.400 -1.764

EVT 22.898 57.597 22.197 54.309 -0.837 -1.813

LogN(0, 0.92)
ÊS 8.444 16.871 7.762 13.003 -0.826 -1.967
AA 10.649 23.047 10.608 21.858 -0.204 -1.091

EVT 10.355 25.523 10.072 24.147 -0.532 -1.173

LogN(0, 0.32)
ÊS 0.035 0.062 0.034 0.054 -0.035 -0.086
AA 0.045 0.084 0.045 0.083 0.003 -0.041

EVT 0.042 0.084 0.042 0.082 -0.004 -0.046

size=500 β1 β2 β1 β2 β1 β2

LogN(0, 1)
ÊS 10.809 22.928 10.190 18.685 -0.787 -2.060
AA 10.122 31.278 9.690 31.139 -0.657 -0.373

EVT 12.792 34.110 12.682 33.862 -0.332 -0.498

LogN(0, 0.92)
ÊS 4.959 10.263 4.726 8.640 -0.483 -1.274
AA 4.778 14.412 4.630 14.396 -0.384 -0.128

EVT 5.992 15.840 5.955 15.761 -0.194 -0.281

LogN(0, 0.32)
ÊS 0.017 0.031 0.016 0.028 -0.024 -0.054
AA 0.019 0.044 0.018 0.044 -0.018 0.003

EVT 0.016 0.034 0.016 0.034 0.002 0.010

loss samples from Lognormal distribution, β1 = 99%, β2 = 99.5%

Table 7: Comparisons of three ES estimators, Lognormal distributed samples
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MSE Var Bias

size=250 β1 β2 β1 β2 β1 β2

GPD(0.3, 1)
ÊS 21.634 49.003 17.271 29.052 -2.089 -4.467
AA 24.628 59.532 23.204 50.409 -1.193 -3.021

EVT 24.767 62.953 22.095 53.099 -1.635 -3.139

GPD(0.2, 1)
ÊS 7.246 14.638 6.518 10.995 -0.853 -1.909
AA 8.947 20.088 8.857 18.984 -0.300 -1.050

EVT 8.774 21.755 8.403 20.304 -0.609 -1.205

GPD(0.1, 1)
ÊS 2.207 4.183 2.037 3.368 -0.412 -0.903
AA 2.772 5.752 2.762 5.542 -0.097 -0.458

EVT 2.582 6.060 2.488 5.678 -0.307 -0.618

size=500 β1 β2 β1 β2 β1 β2

GPD(0.3, 1)
ÊS 15.195 34.398 13.513 24.882 -1.297 -3.085
AA 13.469 42.283 11.991 40.732 -1.216 -1.245

EVT 15.862 42.180 15.145 40.157 -0.847 -1.422

GPD(0.2, 1)
ÊS 4.306 8.990 4.010 7.302 -0.544 -1.299
AA 4.124 12.175 3.910 12.099 -0.463 -0.275

EVT 4.900 12.628 4.802 12.401 -0.312 -0.476

GPD(0.1, 1)
ÊS 1.264 2.471 1.196 2.135 -0.259 -0.580
AA 1.286 3.499 1.244 3.497 -0.204 -0.044

EVT 1.532 3.841 1.508 3.794 -0.154 -0.216

loss samples from GPD, β1 = 99%, β2 = 99.5%

Table 8: Comparisons of three ES estimators, General Pareto distributed samples

MSE Var Bias

size=250 β1 β2 β1 β2 β1 β2

Weibull(0.6, 1)
ÊS 19.342 37.144 17.652 29.131 -1.300 -2.831
AA 24.114 50.042 23.998 47.898 -0.341 -1.464

EVT 23.360 55.835 22.529 52.720 -0.912 -1.765

Weibull(0.9, 1)
ÊS 1.249 2.248 1.168 1.881 -0.285 -0.606
AA 1.576 3.005 1.574 2.914 -0.049 -0.302

EVT 1.453 3.281 1.409 3.094 -0.210 -0.432

Weibull(1.4, 1)
ÊS 0.131 0.226 0.124 0.195 -0.084 -0.176
AA 0.164 0.297 0.164 0.289 -0.014 -0.091

EVT 0.151 0.319 0.151 0.319 0.012 0.004

size=500 β1 β2 β1 β2 β1 β2

Weibull(0.6, 1)
ÊS 10.999 21.795 10.273 18.209 -0.852 -1.894
AA 11.155 29.882 10.720 29.822 -0.659 -0.245

EVT 13.468 34.001 13.277 33.707 -0.438 -0.543

Weibull(0.9, 1)
ÊS 0.660 1.221 0.621 1.063 -0.197 -0.396
AA 0.702 1.675 0.678 1.674 -0.154 -0.032

EVT 0.782 1.825 0.761 1.784 -0.143 -0.201

Weibull(1.4, 1)
ÊS 0.067 0.117 0.064 0.105 -0.058 -0.110
AA 0.073 0.157 0.071 0.157 -0.049 -0.009

EVT 0.070 0.144 0.069 0.139 0.029 0.077

loss samples from Weibull distribution, β1 = 99%, β2 = 99.5%

Table 9: Comparisons of three ES estimators, Weibull distributed samples
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the other two in terms of MSE for most of the scenarios. For scenarios where ÊSβ is not the best
in terms of MSE, its MSEs are comparable to the ones of the other two estimators.

To further investigate the performance, we also calculate the variances and biases for all three
ES estimators and the results are given in Table 5 - Table 9. As we can tell from the tables, the
superiority in the MSE of the proposed ES estimator ÊSβ actually comes from the smaller variance.
It indicates our ES estimator is more robust to the small samples than the other two estimators.
In terms of bias which reveals the difference between the estimator’s expected value and the true
value, the AA estimator is preferred for most underlying distributions. However, if the sample size
is small, the AA estimator is easily influenced by whether the infrequent data would occur or not
in the sample. Therefore, the AA estimator for a small sample is unstable with a large variance.
After all, it only uses a small percentage (1− β, with β = 99% or 99.5%) of all the sample points
while our ES estimator always incorporates much more data—the largest 5% (1−α, with α = 95%)
of losses whatever β is.

The EVT estimator is similar to the AA estimator in terms of the variance and bias. Like the
AA estimator, an extreme value in a small sample will have a big effect on the estimate. Therefore,
it is very unstable which is reflected by the large variance in Table 5 - Table 9. Regarding the MSE,
it is less robust than our ES estimator though both of them utilize the largest 5% of the sample
points within the distribution fitting. Another disadvantage for the EVT ES estimator is that it is
not easy to derive the MLE of a GPD for small samples when computing the EVT estimates.

Another thing we can observe from the tables is that, for the three estimators, their biases are
almost all negative. When the sample size is small, the infrequent extreme values barely appear
in the sample. Therefore, all three estimators tend to underestimate the ES, especially in the high
confidence level (β = 99.5%) case. This is a common phenomenon for sample-based ES estimators,
especially for small samples or high confidence levels.

5.4 Comparison for Distributions without the Third Moment

As mentioned in Remark 1, one limitation of our proposed ES estimator is that the third moment
of the underlying distribution is needed. Therefore, for distributions without the third moment,
it seems the proposed method may not work. However, in reality, with a given data set, the
third moment of the sample always exists, although it might be very large. In this subsection, we
investigate the performance of the proposed method by comparing it with the performance of the
AA ES estimator and the EVT ES estimator.

In particular, we consider the student’s t distributions with degrees of freedom equal to 2.5 or 3,
and the GPD with ξ = 0.35 or 0.5. For those distributions, their third moments do not exist. We
draw samples from those distributions and apply the three ES estimators. The numerical results
are given in Table 10. For reference purpose, we list their true ES values as follows: ES99% = 9.091,
ES99.5% = 12.067 for t with df=2.5; ES99% = 7.003, ES99.5% = 8.913 for t with df=3; ES99% =
38.000, ES99.5% = 54.569 for GPD(0.5,1) and ES99% = 19.173, ES99.5% = 25.222 for GPD(0.35,1).

Table 10 shows the proposed ES estimator is still the best one in terms of MSE for most of
the scenarios, especially for the smaller sample size (250) or the higher confidence level (99.5%)
scenario. Therefore, even for distributions without skewness (the third moment), the proposed ES
estimation method still gives decent results, compared to the AA and EVT ES estimators.

Another thing we need to mention is that, in reality, the skewness of the financial market data
is not that large, and the proposed ES estimation method should work well.
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MSE Var Bias

size=250 β1 β2 β1 β2 β1 β2

t, df=2.5
ÊS 9.237 22.882 6.749 11.310 -1.577 -3.402
AA 10.199 25.784 9.125 18.964 -1.036 -2.611

EVT 10.316 27.173 8.649 20.547 -1.291 -2.574

t, df = 3
ÊS 4.290 9.646 3.588 6.120 -0.838 -1.878
AA 5.010 12.508 4.808 10.903 -0.449 -1.267

EVT 4.962 12.942 4.567 11.288 -0.629 -1.286

GPD(0.5, 1)
ÊS 259.758 753.222 132.640 223.358 -11.275 -23.019
AA 257.813 755.729 176.495 388.803 -9.018 -19.155

EVT 269.263 771.402 173.239 422.384 -9.799 -18.682

GPD(0.35, 1)
ÊS 38.150 92.495 27.710 46.481 -3.231 -6.783
AA 41.887 104.238 37.500 79.897 -2.095 -4.934

EVT 42.385 109.786 35.550 84.892 -2.614 -4.989

size=500 β1 β2 β1 β2 β1 β2

t, df = 2.5
ÊS 6.570 16.347 5.414 9.980 -1.076 -2.523
AA 5.664 18.168 4.565 16.193 -1.048 -1.405

EVT 6.262 17.002 5.569 14.679 -0.832 -1.524

t, df = 3
ÊS 2.774 6.430 2.459 4.574 -0.561 -1.362
AA 2.439 7.894 2.161 7.548 -0.528 -0.588

EVT 2.828 7.667 2.672 7.163 -0.394 -0.710

GPD(0.5, 1)
ÊS 180.212 550.677 98.948 181.718 -9.015 -19.208
AA 163.560 493.845 82.473 289.897 -9.005 -14.281

EVT 165.789 482.412 107.032 284.871 -7.665 -14.055

GPD(0.35, 1)
ÊS 29.115 69.017 24.920 46.044 -2.048 -4.793
AA 24.808 79.719 20.853 74.092 -1.989 -2.372

EVT 28.258 76.334 26.118 69.869 -1.463 -2.543

loss samples from other distributions, β1 = 99%, β2 = 99.5%

Table 10: Comparisons of three ES estimators, other distributed samples

6 Effects of Linear Transformations

In this section, we consider the effects of a linear transformation of the loss sample or loss r.v.’s.
Linear transformations are very common in portfolio management and risk management, such as
exchanging from one currency to another, or changing of measuring units, etc.

Assuming an underlying distribution is transformed linearly with a positive scale multiplier—m
and a constant summand—c, then any random loss sample generated from it will be subject to
the same transformation. In what follows, we use the superscript τ for the new variables after
transformation. Assume that the transformation is in forms of Yτ = mY + c, where Y represents
the original loss sample (or the original loss r.v.).

The three β-level ES estimates for the i-th original sample are denoted by {ESβ,j(i)}3j=1 (j = 1
for the adjusted tail-based normal approximation, j = 2 for AA, and j = 3 for EVT). As for the
corresponding i-th linearly-transformed sample, the new estimators are denoted by {ESτβ,j(i)}3j=1.
Apparently, the β-level theoretical ES estimate for the new sample is:

true ESτβ = m(true ESβ) + c.

First, let us investigate the effects of the linear transformation on the adjusted tail-based normal
estimator. We have the following result:

Proposition 1 If a loss sample or loss r.v. is transformed linearly with a positive multiplier, the
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corresponding tail-based normal r.v. X and the regression-adjusted tail-based normal approximation
ES estimator are subject to the same linear transformation. Moreover, the conditional skewness
stays unchanged.

Proof: Suppose the original loss sample is denoted by {yn}Nn=1 whose α-quantile is Aα and con-
ditional skewness is γα. Undergoing a linear transformation, the loss sample becomes a new one
denoted by {yτn}Nn=1 such that yτn = myn + c for n = 1, . . . , N where m, c are both constants and
m > 0. The α-quantile for the new sample is then mAα + c and the new conditional skewness is

γτα =

∑N
n=1(yτn−mAα−c)31{yτn>mAα+c}∑N

n=1 1{yτn>mAα+c}[∑N
n=1(yτn−mAα−c)21{yτn>mAα+c}∑N

n=1 1{yτn>mAα+c}

] 3
2

=

m3

[∑N
n=1(yn−Aα)31{yn>Aα}∑N

n=1 1{yn>Aα}

]
m3

[∑N
n=1(yn−Aα)21{yn>Aα}∑N

n=1 1{yn>Aα}

] 3
2

= γα. (6.1)

That is, after the linear transformation, γτα is equal to γα. Furthermore, by Eq. (2.11) and Eq. (2.12),
the parameters of the original tail-based normal r.v. X ∼ N(µ, σ2) is solved by

σ =

(
[Φ−1(α)]2 + 1− Φ−1(α)

(1− α)
√

2π
e−

1
2

(Φ−1(α))2
)− 1

2

[∑N
n=1(yn −Aα)2

1{yn>Aα}∑N
n=1 1{yn>Aα}

] 1
2

,

µ = Aα − σΦ−1(α).

(6.2)

Assuming the tail-based normal r.v. for {yτn}Nn=1 is Xτ ∼ N(µτ , (στ )2), we have

στ =

(
[Φ−1(α)]2 + 1− Φ−1(α)

(1− α)
√

2π
e−

1
2

(Φ−1(α))2
)− 1

2

[∑N
n=1(yτn −mAα − c)2

1{yτn>mAα+c}∑N
n=1 1{yτn>mAα+c}

] 1
2

=

(
[Φ−1(α)]2 + 1− Φ−1(α)

(1− α)
√

2π
e−

1
2

(Φ−1(α))2
)− 1

2

[
m2
∑N

n=1(yn −Aα)2
1{yn>Aα}∑N

n=1 1{yn>Aα}

] 1
2

.

Therefore, στ = mσ and µτ = mAα+ c−mσΦ−1(α) = mµ+ c. So we have Xτ ∼ N(mµ+ c,m2σ2)
and Xτ follows the same distribution as mX + c. By Eq. (3.5), the new β-level ES estimator after
the transformation is derived as follows:

ÊSβ(Xτ ) = [ESβ(Xτ )−mAα − c]fα,β(γτα) +mAα + c

= [mESβ(X) + c−mAα − c]fα,β(γα) +mAα + c

= m[ESβ(X)−Aα]fα,β(γα) +mAα + c = mÊSβ(X) + c. (6.3)

where ESβ(Xτ ) = mESβ(X) + c comes from Eq. (2.14). The other scenario that a loss r.v. W is
transformed linearly can be proved similarly. Q.E.D.

From Proposition 1, we have ESτβ,1(i) = mESβ,1(i) + c for our proposed estimator. As for the
AA estimator, ESτβ,2(i) equals mESβ,2(i) + c obviously. Next, let us consider the effects on the
EVT estimator. In particular, we examine whether ESτβ,3(i) equals mESβ,3(i) + c.

Suppose {wk}nvk=1 denote the nv losses that are greater than the threshold v in the original
sample. After the linear transformation, the new threshold is mv + c and losses beyond it become
{mwk + c}nvk=1. Assuming (ξ̂, σ̂) are the maximum likelihood estimation (MLE) GPD parameters
of the i-th original sample, we have

(ξ̂, σ̂) = arg max
ξ,σ

nv∑
k=1

− lnσ −
(

1

ξ
+ 1

)
ln

(
1 +

ξ

σ
(wk − v)

)
, ξ 6= 0. (6.4)
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Suppose (ξ̂τ , σ̂τ ) are the MLE GPD parameters after the linear transformation. Then they satisfy:

(ξ̂τ , σ̂τ ) = arg max
ξ,σ

nv∑
k=1

− lnσ −
(

1

ξ
+ 1

)
ln

(
1 +

ξ

σ
(mwk + c−mv − c)

)
, ξ 6= 0

= arg max
ξ,σ

nv∑
k=1

− ln(σ/m)−
(

1

ξ
+ 1

)
ln

(
1 +

ξ

σ/m
(wk − v)

)
, ξ 6= 0. (6.5)

Comparing Eq. (6.5) to Eq. (6.4), we have ξ̂τ = ξ̂ and σ̂τ = mσ̂. According to Table 4, the EVT
β-level ES estimator (ξ 6= 0) for the sample after that linear transformation is

ESτβ,3(i) =
mv + c+ σ̂τ

ξ̂τ

[
( 1−β
nv/N

)−ξ̂
τ − 1

]
+ σ̂τ − ξ̂τ (mv + c)

1− ξ̂τ

=
mv +m σ̂

ξ̂

[
( 1−β
nv/N

)−ξ̂ − 1
]

+mσ̂ −mξ̂v + (1− ξ̂)c

1− ξ̂
= mESβ,3(i) + c. (6.6)

The other situation when ξ = 0 can be demonstrated similarly. Therefore, all three ES estimators
are subject to the same linear transformation as the loss sample. Furthermore, we have

(ESτβ,j(i)− true ESτβ)2 = (mESβ,j(i) + c−m(true ESβ)− c)2

= m2(ESβ,j(i)− true ESβ)2, j = 1, 2, 3, i = 1, 2, . . . ,M.
(6.7)

Obviously, the MSE of the new sample are proportional to the original one with a constant multiple
m2 based on Eq. (6.7). We can prove this property also holds for the variance and the square
of bias similarly. Therefore, the comparison results among the three estimators in terms of MSE,
variance, and bias are maintained after a linear transformation (m > 0) is applied to the underlying
distribution or the loss samples. For example, the advantage of our proposed ES estimator still
exists after the linear transformation. Moreover, this property ensures it is effective in Section 5 to
only consider the situation that the scale and locations are equal to 1 and 0, respectively.

7 Conclusion

In this paper, we propose a simple and robust ES estimation method based on the tail-based normal
approximation. The regression model related to a sample’s tail weight is also introduced to make the
estimations more accurate. For various heavy-tailed loss distributions, the regression-adjusted ES
estimation errors are all sufficiently small. Moreover, compared to the commonly-used arithmetic
average or EVT estimators, our proposed ES estimator is preferred in terms of MSE at high levels
such as 99% and 99.5% for small samples. It also shows that our method works well under linear
transformations, which further adds to its practicality in the portfolio management.

Nonetheless, we only consider the scenario that β = 99% or 99.5% with α = 95% and other
combinations may have better performances. It is also possible that the proposed regression models
would not perform as well for a sample with an extremely large conditional skewness (γα > 12)
though that situation is quite rare in practice. Instead of fitting the tailed data, the tail-based
normal approximation matches the specific statistics of excessive losses. That normal approximation
itself cannot describe the tail behaviors correctly and needs to work jointly with the regression
model to give the ES estimate. Furthermore, MSE, variance, and bias are used to evaluate the ES
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estimator but the underestimation error should be paid more attention. Hence, an asymmetric loss
function may be designed to better evaluate the estimators. These deficiencies are worth looking
into in the future.
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Appendix A Derivations

Suppose X ∼ N(µ, σ2) and Pr(X ≤ Aα) = α. Let Z ≡ X−µ
σ and a ≡ Aα−µ

σ . Then Z ∼ N(0, 1) and

Φ(a) = Φ
(
Aα−µ
σ

)
= Pr

(
Z ≤ Aα−µ

σ

)
= Pr(X ≤ Aα) = α, where Φ(·) is the CDF of the standard

normal distribution. So we can get

E[X|X > Aα] = σE [Z|Z > a] + µ = µ+
σ

1− Φ(a)

∫ ∞
a

z
1√
2π
e−

z2

2 dz

= µ+
σ

(1− α)
√

2π
e−

a2

2 = µ+
σ

(1− α)
√

2π
e−

(Aα−µ)2
2σ2 ,

E[X2|X > Aα] =
1

Pr(X > Aα)

∫ ∞
Aα

x2

√
2πσ

e−
(x−µ)2

2σ2 dx =
1

1− α

∫ ∞
a

(zσ + µ)2

√
2π

e−
z2

2 dz

=
1

(1− α)
√

2π

∫ ∞
a

(z2σ2 + 2µσz + µ2)e−
z2

2 dz

= µ2 + σ2 +
σ(Aα + µ)

(1− α)
√

2π
e−

(Aα−µ)2
2σ2 ,

where the form
∫∞
a z2e−

z2

2 dz is evaluated using integration by parts as follows:∫ ∞
a

z2e−
z2

2 dz =

∫ ∞
a
−zde−

z2

2 =

(
−ze−

z2

2

)∣∣∣∣∞
a

−
∫ ∞
a
−e−

z2

2 dz = ae−
a2

2 +
√

2π(1− Φ(a)).

E[X3|X > Aα] can be derived using integration by parts in a similar way.
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Appendix B Closed-form Formulas for Some Heavy-tailed Distributions

In what follows we summarize closed-form expressions of some necessary statistics used in this paper. Results are reported in Table 11,
in which A is a constant, Γ(·) is the gamma function, γ(α;x) =

∫ x
0 z

α−1e−zdz is the lower incomplete gamma function and Γ̂(α;x) =∫∞
x zα−1e−zdz is the upper incomplete gamma function. Except t and GPD, the domains of PDF and CDF are w > 0. In GPD,
ξ 6= 0, σ > 0 always hold and 1 + ξw/σ > 0 should be guaranteed when ξ is negative. Some non-analytical expressions need to be
computed by numerical methods or software packages. For the ease of presentation, long equations are shown below separately:

mt
1 =

1

1− FW (A)

Γ(v+1
2 )v

√
vπΓ(v2 )(v − 1)

(
A2

v
+ 1

)− v−1
2

, v > 1;

mGPD
2 = A2 + 2

(
1 +

ξ

σ
A

)
σ(A+ σ −Aξ)
(ξ − 1)(2ξ − 1)

, ξ <
1

2
;

mGPD
3 = A3 −

3σ
(
1 + ξAσ

)
ξ − 1

A2 +
6σ2

(
1 + ξAσ

)2
(ξ − 1)(2ξ − 1)

A−
6σ3

(
1 + ξAσ

)3
(ξ − 1)(2ξ − 1)(3ξ − 1)

, ξ <
1

3
.

W t, df =v Gamma(α, β) LogN(µ, σ2) GPD(ξ, σ) Weibull(k, λ)

PDF, fW (w)
Γ( v+1

2
)√

vπΓ( v
2

)
(1 + w2

v
)−

v+1
2

wα−1e
−w
β

Γ(α)βα
1√

2πσw
e−

(lnw−µ)2
2σ2

1
σ

(
1 + ξw

σ

)− 1
ξ
−1 k

λ
(w
λ

)k−1e−(w
λ

)k

CDF, FW (w)
∫ w
−∞ fW (x)dx

γ(α;w
β )

Γ(α)
Φ( lnw−µ

σ
) 1−

(
1 + ξw

σ

)− 1
ξ 1− e−(w

λ
)k

E[W |W ≥ A] mt
1

βΓ̂(α+1;A
β )

(1−FW (A))Γ(α)

Φ(µ+σ
2−lnA
σ

)

1−FW (A)
eµ+σ2

2 A+ ξA+σ
1−ξ , ξ < 1

λΓ̂
(

1
k

+1;(Aλ )
k
)

1−FW (A)

E[W 2|W ≥ A]
∫∞
A x2fW (x)dx

1−FW (A)
, v > 2

β2Γ̂(α+2;A
β )

(1−FW (A))Γ(α)

Φ(µ+2σ2−lnA
σ

)

1−FW (A)
e2µ+2σ2

mGPD
2

λ2Γ̂
(

2
k

+1;(Aλ )
k
)

1−FW (A)

E[W 3|W ≥ A]
∫∞
A x3fW (x)dx

1−FW (A)
, v > 3

β3Γ̂(α+3;A
β )

(1−FW (A))Γ(α)

Φ(µ+3σ2−lnA
σ

)

1−FW (A)
e3µ+ 9

2
σ2

mGPD
3

λ3Γ̂
(

3
k

+1;(Aλ )
k
)

1−FW (A)

Table 11: Closed-form formulas of 1st, 2nd & 3rd conditional moments.
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